des traducteurs ???
-
- Familier
- Messages : 183
- Enregistré le : dimanche 13 avril 2008 à 21:07
- Localisation : grenoble
des traducteurs ???
Bonsoir, j'ai trouvé ce texte qui à l'air interressant mais j'ai vraiment du mal à le traduire exactement... Quelqu'un aurait il le coeur à l'ouvrage ??
Brief Research Communication
*
Correspondence to Guy A. Rouleau, Centre hospitalier de l'Université de Montréal, 2099, Alexandre De-Seve Street, Room Y-3633,
Montreal, Quebec, Canada.
Please cite this article as follows: Gauthier J, Spiegelman D, Piton A, Lafrenière RG, St-Onge J, Lapointe L, Hamdan FF, Cossette P,
Mottron L, Fombonne É, Joober R, Marineau C, Drapeau P, Rouleau GA. 2008. Novel De Novo SHANK3 Mutation in Autistic Patients. Am
J Med Genet Part B.
Received: 14 March 2008; Accepted: 28 May 2008
10.1002/ajmg.b.30822 About DOI
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by complex behavioral and cognitive deficits. A number of
studies have confirmed that genetic factors play an important role in ASD [Muhle et al., [2004]]. Our gene discovery strategy for ASD is to
systematically sequence a large number of genes in autistic individuals, focusing on genes encoding synapse proteins. This strategy is
based on two hypotheses: (1) that de novo mutations in different genes may account for a significant portion of ASD and (2) that mutations
in synaptic genes are responsible for the ASD phenotype. It is known that ASD is highly heterogeneous and cannot be explained by few
Novel de novo SHANK3 mutation in autistic patients
Julie Gauthier 1, Dan Spiegelman 1, Amélie Piton 1, Ronald G. Lafrenière 1, Sandra Laurent 1, Judith St-Onge 1, Line Lapointe 1, Fadi F.
Hamdan 2, Patrick Cossette 1, Laurent Mottron 3, Éric Fombonne 4, Ridha Joober 5, Claude Marineau 1, Pierre Drapeau 6, Guy A.
Rouleau 1 *
1
Centre of Excellence in Neuromics of Université de Montréal, CHUM Research Centre, Notre-Dame Hospital, Université de Montréal,
Montreal, QC, Canada
2
Division of Medical Genetics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
3
Department of Psychiatry, Université de Montréal, Hôpital Rivière-des-Prairies, Montreal, Canada
4
Department of Psychiatry, McGill University and Montreal Children's Hospital, Montreal, QC, Canada
5
Department of Psychiatry, McGill University and Douglas Hospital Research Centre, Montreal, QC, Canada
6
Department of Pathology and Cellular Biology, and Groupe de recherche sur le système nerveux central, Université de Montréal,
Montreal, QC, Canada
email: Guy A. Rouleau (guy.rouleau@umontreal.ca)
KEYWORDS
Splice site • Autism spectrum disorder • SHANK • de novo • Pervasive developmental disorder
ABSTRACT
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo
mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene
discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190 controls. Here, we report the identification
of two putative causative mutations: one being a de novo deletion at an intronic donor splice site and one missense transmitted from an
epileptic father. We were able to confirm the deleterious effect of the splice site deletion by RT-PCR using mRNA extracted from cultured
lymphoblastoid cells. The missense mutation, a leucine to proline at amino acid position 68, is perfectly conserved across all species
examined, and would be predicted to disrupt an alpha-helical domain. These results further support the role of SHANK3 gene disruption
in the etiology of ASD. © 2008 Wiley-Liss, Inc.
DIGITAL OBJECT IDENTIFIER (DOI)
ARTICLE TEXT
Novel de novo SHANK3 mutation in autistic patients
Julie Gauthier 1, Dan Spiegelman 1, Amélie Piton 1, Ronald G. Lafrenière 1, Sandra Laurent 1, Judith St-Onge 1, Line Lapointe 1, Fadi F.
Hamdan 2, Patrick Cossette 1, Laurent Mottron 3, Éric Fombonne 4, Ridha Joober 5, Claude Marineau 1, Pierre Drapeau 6, Guy A.
Rouleau 1 *
1
Centre of Excellence in Neuromics of Université de Montréal, CHUM Research Centre, Notre-Dame Hospital, Université de Montréal,
Montreal, QC, Canada
2
Division of Medical Genetics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
3
Department of Psychiatry, Université de Montréal, Hôpital Rivière-des-Prairies, Montreal, Canada
4
Department of Psychiatry, McGill University and Montreal Children's Hospital, Montreal, QC, Canada
5
Department of Psychiatry, McGill University and Douglas Hospital Research Centre, Montreal, QC, Canada
6
Department of Pathology and Cellular Biology, and Groupe de recherche sur le système nerveux central, Université de Montréal,
Montreal, QC, Canada
email: Guy A. Rouleau (guy.rouleau@umontreal.ca)
KEYWORDS
Splice site • Autism spectrum disorder • SHANK • de novo • Pervasive developmental disorder
ABSTRACT
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo
mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene
discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190
common variants. Furthermore, the few genes that have been found to definitely predispose to ASD explain only a small fraction of cases
[Jamain et al., [2003]; Durand et al., [2007]]. The similar ASD incidence across different populations, in spite of a low reproductive fitness,
argues in favor of a novel mutation scenario. A large body of neurobiological studies indicate that synaptic dysfunctions occur in ASD:
reduced neuronal size and shortened dendritic patterns are a few examples [Raymond et al., [1996]; Kemper and Bauman, [1998]]. In
addition, the identification of mutations in the postsynaptic cell adhesion neuroligin three and four genescommon variants. Furthermore, the few genes that have been found to definitely predispose to ASD explain only a small fraction of cases
[Jamain et al., [2003]; Durand et al., [2007]]. The similar ASD incidence across different populations, in spite of a low reproductive fitness,
argues in favor of a novel mutation scenario. A large body of neurobiological studies indicate that synaptic dysfunctions occur in ASD:
reduced neuronal size and shortened dendritic patterns are a few examples [Raymond et al., [1996]; Kemper and Bauman, [1998]]. In
addition, the identification of mutations in the postsynaptic cell adhesion neuroligin three and four genes in autistic patients further support
this hypothesis [Jamain et al., [2003]].
A cohort of 427 ASD subjects (66 females: 361 males) and 190 ethnically matched controls were screened for the entire coding region and
intronic splice junctions of the SHANK3 gene except exon 11, which was problematic even after numerous primer redesigns and PCR
amplification conditions, as reported by others [Wilson et al., [2003]; Moessner et al., [2007]]. Diagnostic and selection criteria for the ASD
subjects are described in detail elsewhere [Gauthier et al., [2005]]. Briefly, all subjects were diagnosed using the Diagnostic and Statistical
Manual of Mental Disorders criteria. Depending on the recruitment site, Autism Diagnostic Interview-Revised and the Autism Diagnostic
Observation Schedule were used. In addition, the Autism Screening Questionnaire (ASQ) was also completed for all our subjects. We
excluded patients with an estimated mental age <18 months, a diagnosis of Rett syndrome or Childhood Disintegrative Disorder and
patients with evidence of any psychiatric and neurological conditions including: birth anoxia, rubella during pregnancy, fragile-X disorder,
encephalitis, phenylketonuria, tuberous sclerosis, Tourette and West syndromes. Primer sequences were designed using ExonPrimer from
UCSC Genome Browser. Sequence determination and base pair variant detection were performed at the McGill University and Genome
Quebec Innovation Centre in Montreal, Canada (www.genomequebecplatforms.com/mcgill/) on a 3730XL DNA Analyzer System. The
human SHANK3 cDNA sequence was kindly provided by Stephen Scherer [Moessner et al., [2007]]. RT-PCR was performed on mRNA
isolated from cultured lymphoblastoid cells by using a forward primer targeting the exon 15/16 junction: 5-TTCCTCATCGAGGTGAACG-
3 and a reverse primer targeting the exon 20/21 junction: 5-AGCTTCTCGTCCTCCCCTAC-3. Approximately 106 lymphoblastoid cells
were lysed in TRIZOL® Reagent (Invitrogen, Carlsbad, CA) and total RNA was extracted according to the protocol of manufacturer . We
obtained 150 µg of total RNA. As SHANK3 is not well expressed in lymphoblastoid cells [Durand et al., [2007]], we purified mRNA from
150 µg of total RNA before the reverse transcription by using Oligotex protocol (Qiagen, Valencia, CA). After this purification, the mRNA
was reverse transcribed into cDNA using M-MLV RT (Moloney murine leukemia virus reverse transcriptase, Invitrogen): 29 µl of mRNA (
2-5 µg), 1 µl random hexamer 1 µg/µl (GE Healthcare, Piscataway, NJ), 65°C for 3 min, 10 µl first strand buffer 5X (Invitrogen), 5 µl of
DTT 0.1 M (Invitrogen), 1 µl of RNAguardTM Rnase inhibitor porcine 32.2 mU/µl (GE Healthcare), 1 µl of M-MLV RT enzyme 200 U/µl
(Invitrogen), 2 µl of dNTP 25 mM (Invitrogen), 37°C for 1 hr. 50 µl of RT are diluted in a final volume of 100 µl.
Eight missense variants and one potential splice site mutation were identified during the screen (Table I). Four of the missenses were
identified in both patient and control samples: the I245T missense was previously reported as rs9616915, at allelic frequencies
comparable to our study; A721T was found in 5-6% of samples; P1654T was previously identified in normal control samples [Durand et al.,
[2007]]; and R1298K was found in one ASD and one control sample. Two missenses were found only in single control samples (R215C,
which maps within the third Ankyrin repeat and A1324T). The A224T missense identified in one of our ASD samples was previously
identified in one control sample [Durand et al., [2007]]. The number of variants identified is consistent with previous studies, considering
we did not screen these samples for CNVs. The L68P missense was identified in one female patient with pervasive developmental
disorder not otherwise specified, and was inherited from the father of patient who was diagnosed with epilepsy. The proband did not have
seizures. There is also a paternal cousin diagnosed with dysphasia. The mother had pre-eclampsia at 38 weeks of pregnancy and the
pregnancy was provoked at 39 weeks. The ASQ score for this patient was 16 (score > 15 = ASD). The proband's development was
considered normal from birth to age one. She walked at 13-14 months. She stopped saying the few words learned at one and a half years
of age. Suspicion of ASD came around 18 months of age when parents noted a language deficiency.
Table I. SHANK3 Non-Synonymous Variants Identified in ASD and Control Subjects
Exona
Nucleotide
changeb
Amino acid
changeb
Occurrence
Transmission
from
Known
SNP
ASD
(n = 427)
CTRL
(n = 190)
2 c.203T>C L68P 1 0 Father No
6 c.643C>T R215C 0 1 Mother No
6 c.670G>A A224T 1 0 Not done Durand et
al.
6 c.734T>C I245T 270 124 Not done rs9616915
19 c.2161G>A A721T 28 10 Not done No
19 c.2265C +1delG S755Sfs × 1 1 0 de novo No
21 c.3893G>A R1298K 1 1 Mother No
21 c.3970G>A A1324T 0 1 Mother No
24 c.4960C>A P1654T 2 3 Not done Durand et
al.
common variants. Furthermore, the few genes that have been found to definitely predispose to ASD explain only a small fraction of cases
[Jamain et al., [2003]; Durand et al., [2007]]. The similar ASD incidence across different populations, in spite of a low reproductive fitness,
argues in favor of a novel mutation scenario. A large body of neurobiological studies indicate that synaptic dysfunctions occur in ASD:
reduced neuronal size and shortened dendritic patterns are a few examples [Raymond et al., [1996]; Kemper and Bauman, [1998]]. In
addition, the identification of mutations in the postsynaptic cell adhesion neuroligin three and four genes in autistic patients further support
this hypothesis [Jamain et al., [2003]].
A cohort of 427 ASD subjects (66 females: 361 males) and 190 ethnically matched controls were screened for the entire coding region and
intronic splice junctions of the SHANK3 gene except exon 11, which was problematic even after numerous primer redesigns and PCR
amplification conditions, as reported by others [Wilson et al., [2003]; Moessner et al., [2007]]. Diagnostic and selection criteria for the ASD
subjects are described in detail elsewhere [Gauthier et al., [2005]]. Briefly, all subjects were diagnosed using the Diagnostic and Statistical
Manual of Mental Disorders criteria. Depending on the recruitment site, Autism Diagnostic Interview-Revised and the Autism Diagnostic
Observation Schedule were used. In addition, the Autism Screening Questionnaire (ASQ) was also completed for all our subjects. We
excluded patients with an estimated mental age <18 months, a diagnosis of Rett syndrome or Childhood Disintegrative Disorder and
patients with evidence of any psychiatric and neurological conditions including: birth anoxia, rubella during pregnancy, fragile-X disorder,
encephalitis, phenylketonuria, tuberous sclerosis, Tourette and West syndromes. Primer sequences were designed using ExonPrimer from
UCSC Genome Browser. Sequence determination and base pair variant detection were performed at the McGill University and Genome
Quebec Innovation Centre in Montreal, Canada (www.genomequebecplatforms.com/mcgill/) on a 3730XL DNA Analyzer System. The
human SHANK3 cDNA sequence was kindly provided by Stephen Scherer [Moessner et al., [2007]]. RT-PCR was performed on mRNA
isolated from cultured lymphoblastoid cells by using a forward primer targeting the exon 15/16 junction: 5-TTCCTCATCGAGGTGAACG-
3 and a reverse primer targeting the exon 20/21 junction: 5-AGCTTCTCGTCCTCCCCTAC-3. Approximately 106 lymphoblastoid cells
were lysed in TRIZOL® Reagent (Invitrogen, Carlsbad, CA) and total RNA was extracted according to the protocol of manufacturer . We
obtained 150 µg of total RNA. As SHANK3 is not well expressed in lymphoblastoid cells [Durand et al., [2007]], we purified mRNA from
150 µg of total RNA before the reverse transcription by using Oligotex protocol (Qiagen, Valencia, CA). After this purification, the mRNA
was reverse transcribed into cDNA using M-MLV RT (Moloney murine leukemia virus reverse transcriptase, Invitrogen): 29 µl of mRNA (
2-5 µg), 1 µl random hexamer 1 µg/µl (GE Healthcare, Piscataway, NJ), 65°C for 3 min, 10 µl first strand buffer 5X (Invitrogen), 5 µl of
DTT 0.1 M (Invitrogen), 1 µl of RNAguardTM Rnase inhibitor porcine 32.2 mU/µl (GE Healthcare), 1 µl of M-MLV RT enzyme 200 U/µl
(Invitrogen), 2 µl of dNTP 25 mM (Invitrogen), 37°C for 1 hr. 50 µl of RT are diluted in a final volume of 100 µl.
Eight missense variants and one potential splice site mutation were identified during the screen (Table I). Four of the missenses were
identified in both patient and control samples: the I245T missense was previously reported as rs9616915, at allelic frequencies
comparable to our study; A721T was found in 5-6% of samples; P1654T was previously identified in normal control samples [Durand et al.,
[2007]]; and R1298K was found in one ASD and one control sample. Two missenses were found only in single control samples (R215C,
which maps within the third Ankyrin repeat and A1324T). The A224T missense identified in one of our ASD samples was previously
identified in one control sample [Durand et al., [2007]]. The number of variants identified is consistent with previous studies, considering
we did not screen these samples for CNVs. The L68P missense was identified in one female patient with pervasive developmental
disorder not otherwise specified, and was inherited from the father of patient who was diagnosed with epilepsy. The proband did not have
seizures. There is also a paternal cousin diagnosed with dysphasia. The mother had pre-eclampsia at 38 weeks of pregnancy and the
pregnancy was provoked at 39 weeks. The ASQ score for this patient was 16 (score > 15 = ASD). The proband's development was
considered normal from birth to age one. She walked at 13-14 months. She stopped saying the few words learned at one and a half years
of age. Suspicion of ASD came around 18 months of age when parents noted a language deficiency.
Table I. SHANK3 Non-Synonymous Variants Identified in ASD and Control Subjects
Exona
Nucleotide
changeb
Amino acid
changeb
Occurrence
Transmission
from
Known
SNP
ASD
(n = 427)
CTRL
(n = 190)
2 c.203T>C L68P 1 0 Father No
6 c.643C>T R215C 0 1 Mother No
6 c.670G>A A224T 1 0 Not done Durand et
al.
6 c.734T>C I245T 270 124 Not done rs9616915
19 c.2161G>A A721T 28 10 Not done No
19 c.2265C +1delG S755Sfs × 1 1 0 de novo No
21 c.3893G>A R1298K 1 1 Mother No
21 c.3970G>A A1324T 0 1 Mother No
24 c.4960C>A P1654T 2 3 Not done Durand et
al.
a Exon numbering is according to Wilson et al. [2003].
b cDNA sequence as described by Moessner et al. [2007].
Page 2 sur 4
Wiley InterScience :: Article Full Text HTML
The Leucine 68 residue is 100% conserved from vertebrates to sea urchin, C. elegans, and insects, and is also conserved between
SHANK3 and its close paralogs SHANK1 and SHANK2 (Fig. 1). Secondary structure modeling of this region of the SHANK3 protein using
nnPredict (http://www.cmpharm.ucsf.edu/ nomi/nnpredict.html) suggests that the Leu68 residue lies in an alpha-helical domain. Given
this high level of conservation, that a substitution of the leucine for a proline at this position would be predicted to disrupt an alpha-helical
domain, and that the missense is not found in normal control samples suggests that this missense may be a cause of ASD in this affected
individual. However, functional studies will be required to confirm that this mutation is indeed pathogenic.
The splicing variant was examined in more detail. It was found in a male patient diagnosed with autism disorder, but was absent from
blood DNA samples from either of the biological parents (verified by DNA fingerprinting using nine highly informative microsatellite
markers). The ASQ score for this patient was 23. The delivery was normal at birth. He sat at 6 months of age, walked at 15 months and
said his first words at 12-13 months of age. Both parents are non-affected by ASD and there is no known history of ASD in this family. This
therefore constitutes a de novo mutation in this affected individual. Deletion of a G residue from the highly conserved splice donor site
would be predicted to lead to aberrant splicing of the transcript (Fig. 1A). This was confirmed using RT-PCR (Fig. 2) of mRNA isolated
from a lymphoblastoid cell line derived from the affected individual. In addition to the expected wild-type 483 bp product, a 559 bp product
could be amplified from the mRNA of patient, but not from a control mRNA sample. DNA sequencing of the RT-PCR products showed the
expected 483 bp wild-type fragment, whereas the 559 bp product contained an additional 76 bp of sequence corresponding to the 5end of
intron 19. Thus, the 1 bp deletion leads to skipping of the appropriate splice donor site, and use of a cryptic splice donor site downstream
in intron 19. The aberrant transcript is predicted to encode a prematurely truncated SHANK3 peptide of 755 amino acid residues, and
lacking a large portion of the C-terminal domains.
Since the SHANK3 protein acts as a scaffolding protein, such a prematurely truncated peptide could act in a dominant negative fashion in
cells where it is expressed. Alternately, the aberrantly spliced transcript may be degraded, leading to reduced levels of SHANK3 protein.
This would be in agreement with Durand et al. [2007] who showed that abnormal SHANK3 gene dosage or premature truncation of the
peptide are associated with ASD [Durand et al., [2007]]. We have also detected rare non-synonymous variants both in ASD patients and
controls. The potential role of these remains to be determined.
In summary, we have identified novel mutations in the SHANK3 gene in ASD patients that underline the role of this gene in ASD. Together
with previous observations, these data support our de novo mutation hypothesis for ASD. Finally, these new mutations further support the
notion that ASD is caused by dysfunction of synaptic proteins.
Acknowledgements
We would like to thank the families who made this research possible by participating in our study. Thanks to the Synapse-to-Disease
teams for their work. This work was funded by Genome Canada and Genome Quebec.
Figure 1. A: Peptide sequence alignment of a portion of the SHANK3 protein from
different species (orthologous to the human residues 29-88) showing conservation of
the Leucine 68 residue (asterisk). Predicted secondary structure using nnPredict is
shown below the sequence from SHANK1 (H = helix; E = strand; - = no prediction). B:
Sequence of the splice donor and acceptor sites for intron 19 with flanking
sequences for wilt-type (WT) and mutant (c.2256C-1delG) alleles. Deletion of the first
base of the intron causes aberrant splicing, and premature truncation of the peptide
after codon 755. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
[Normal View 94K | Magnified View 189K]
Figure 2. mRNA expression of the human SHANK3 gene isolated from a
lymphoblastoid cell line derived from the affected individual carrying the splice site
deletion (Proband) and one control individual. The 483 bp band corresponds to the
correctly spliced normal allele in both the control and the proband, whereas the 559
bp band seen only in the proband contained an additional 76 bp of sequence
corresponding to the 5 end of intron 19.
[Normal View 23K | Magnified View 28K]
REFERENCES
Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, et al.
2007. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat
Genet 39(1): 25-27. Links
Gauthier J, Bonnel A, St-Onge J, Karemera L, Laurent S, Mottron L, Fombonne E, Joober R, Rouleau GA. 2005. NLGN3/NLGN4 gene
mutations are not responsible for autism in the Quebec population. Am J Med Genet B Neuropsychiatr Genet 132(1): 74-75. Links
Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, et al. 2003.
Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1): 27-29. Links
Kemper TL, Bauman M. 1998. Neuropathology of infantile autism. J Neuropathol Exp Neurol 57(7): 645-652. Links
Page 3 sur 4
Wiley InterScience :: Article Full Text HTML
Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, et al. 2007.
Contribution of SHANK3 Mutations to Autism Spectrum Disorder. Am J Hum Genet 81(6): 1289-1297. Links
Muhle R, Trentacoste SV, Rapin I. 2004. The genetics of autism. Pediatrics 113(5): 472-486. Links
Raymond GV, Bauman ML, Kemper TL. 1996. Hippocampus in autism: a Golgi analysis. Acta Neuropathol (Berl) 91(1): 117-119. Links
Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, Hu S, Marshall J, McDermid HE. 2003. Molecular characterisation
of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med
Genet 40(8): 575-584. Links
Page 4 sur 4
Wiley InterScience :: Article Full Text HTML
Bon O.K, c'est le bordel en faisant le copier coller mais si quelqu'un a donc BEAUCOUP de courage je peux l'envoyer par mail en format PDF...
Brief Research Communication
*
Correspondence to Guy A. Rouleau, Centre hospitalier de l'Université de Montréal, 2099, Alexandre De-Seve Street, Room Y-3633,
Montreal, Quebec, Canada.
Please cite this article as follows: Gauthier J, Spiegelman D, Piton A, Lafrenière RG, St-Onge J, Lapointe L, Hamdan FF, Cossette P,
Mottron L, Fombonne É, Joober R, Marineau C, Drapeau P, Rouleau GA. 2008. Novel De Novo SHANK3 Mutation in Autistic Patients. Am
J Med Genet Part B.
Received: 14 March 2008; Accepted: 28 May 2008
10.1002/ajmg.b.30822 About DOI
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by complex behavioral and cognitive deficits. A number of
studies have confirmed that genetic factors play an important role in ASD [Muhle et al., [2004]]. Our gene discovery strategy for ASD is to
systematically sequence a large number of genes in autistic individuals, focusing on genes encoding synapse proteins. This strategy is
based on two hypotheses: (1) that de novo mutations in different genes may account for a significant portion of ASD and (2) that mutations
in synaptic genes are responsible for the ASD phenotype. It is known that ASD is highly heterogeneous and cannot be explained by few
Novel de novo SHANK3 mutation in autistic patients
Julie Gauthier 1, Dan Spiegelman 1, Amélie Piton 1, Ronald G. Lafrenière 1, Sandra Laurent 1, Judith St-Onge 1, Line Lapointe 1, Fadi F.
Hamdan 2, Patrick Cossette 1, Laurent Mottron 3, Éric Fombonne 4, Ridha Joober 5, Claude Marineau 1, Pierre Drapeau 6, Guy A.
Rouleau 1 *
1
Centre of Excellence in Neuromics of Université de Montréal, CHUM Research Centre, Notre-Dame Hospital, Université de Montréal,
Montreal, QC, Canada
2
Division of Medical Genetics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
3
Department of Psychiatry, Université de Montréal, Hôpital Rivière-des-Prairies, Montreal, Canada
4
Department of Psychiatry, McGill University and Montreal Children's Hospital, Montreal, QC, Canada
5
Department of Psychiatry, McGill University and Douglas Hospital Research Centre, Montreal, QC, Canada
6
Department of Pathology and Cellular Biology, and Groupe de recherche sur le système nerveux central, Université de Montréal,
Montreal, QC, Canada
email: Guy A. Rouleau (guy.rouleau@umontreal.ca)
KEYWORDS
Splice site • Autism spectrum disorder • SHANK • de novo • Pervasive developmental disorder
ABSTRACT
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo
mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene
discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190 controls. Here, we report the identification
of two putative causative mutations: one being a de novo deletion at an intronic donor splice site and one missense transmitted from an
epileptic father. We were able to confirm the deleterious effect of the splice site deletion by RT-PCR using mRNA extracted from cultured
lymphoblastoid cells. The missense mutation, a leucine to proline at amino acid position 68, is perfectly conserved across all species
examined, and would be predicted to disrupt an alpha-helical domain. These results further support the role of SHANK3 gene disruption
in the etiology of ASD. © 2008 Wiley-Liss, Inc.
DIGITAL OBJECT IDENTIFIER (DOI)
ARTICLE TEXT
Novel de novo SHANK3 mutation in autistic patients
Julie Gauthier 1, Dan Spiegelman 1, Amélie Piton 1, Ronald G. Lafrenière 1, Sandra Laurent 1, Judith St-Onge 1, Line Lapointe 1, Fadi F.
Hamdan 2, Patrick Cossette 1, Laurent Mottron 3, Éric Fombonne 4, Ridha Joober 5, Claude Marineau 1, Pierre Drapeau 6, Guy A.
Rouleau 1 *
1
Centre of Excellence in Neuromics of Université de Montréal, CHUM Research Centre, Notre-Dame Hospital, Université de Montréal,
Montreal, QC, Canada
2
Division of Medical Genetics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
3
Department of Psychiatry, Université de Montréal, Hôpital Rivière-des-Prairies, Montreal, Canada
4
Department of Psychiatry, McGill University and Montreal Children's Hospital, Montreal, QC, Canada
5
Department of Psychiatry, McGill University and Douglas Hospital Research Centre, Montreal, QC, Canada
6
Department of Pathology and Cellular Biology, and Groupe de recherche sur le système nerveux central, Université de Montréal,
Montreal, QC, Canada
email: Guy A. Rouleau (guy.rouleau@umontreal.ca)
KEYWORDS
Splice site • Autism spectrum disorder • SHANK • de novo • Pervasive developmental disorder
ABSTRACT
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo
mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene
discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190
common variants. Furthermore, the few genes that have been found to definitely predispose to ASD explain only a small fraction of cases
[Jamain et al., [2003]; Durand et al., [2007]]. The similar ASD incidence across different populations, in spite of a low reproductive fitness,
argues in favor of a novel mutation scenario. A large body of neurobiological studies indicate that synaptic dysfunctions occur in ASD:
reduced neuronal size and shortened dendritic patterns are a few examples [Raymond et al., [1996]; Kemper and Bauman, [1998]]. In
addition, the identification of mutations in the postsynaptic cell adhesion neuroligin three and four genescommon variants. Furthermore, the few genes that have been found to definitely predispose to ASD explain only a small fraction of cases
[Jamain et al., [2003]; Durand et al., [2007]]. The similar ASD incidence across different populations, in spite of a low reproductive fitness,
argues in favor of a novel mutation scenario. A large body of neurobiological studies indicate that synaptic dysfunctions occur in ASD:
reduced neuronal size and shortened dendritic patterns are a few examples [Raymond et al., [1996]; Kemper and Bauman, [1998]]. In
addition, the identification of mutations in the postsynaptic cell adhesion neuroligin three and four genes in autistic patients further support
this hypothesis [Jamain et al., [2003]].
A cohort of 427 ASD subjects (66 females: 361 males) and 190 ethnically matched controls were screened for the entire coding region and
intronic splice junctions of the SHANK3 gene except exon 11, which was problematic even after numerous primer redesigns and PCR
amplification conditions, as reported by others [Wilson et al., [2003]; Moessner et al., [2007]]. Diagnostic and selection criteria for the ASD
subjects are described in detail elsewhere [Gauthier et al., [2005]]. Briefly, all subjects were diagnosed using the Diagnostic and Statistical
Manual of Mental Disorders criteria. Depending on the recruitment site, Autism Diagnostic Interview-Revised and the Autism Diagnostic
Observation Schedule were used. In addition, the Autism Screening Questionnaire (ASQ) was also completed for all our subjects. We
excluded patients with an estimated mental age <18 months, a diagnosis of Rett syndrome or Childhood Disintegrative Disorder and
patients with evidence of any psychiatric and neurological conditions including: birth anoxia, rubella during pregnancy, fragile-X disorder,
encephalitis, phenylketonuria, tuberous sclerosis, Tourette and West syndromes. Primer sequences were designed using ExonPrimer from
UCSC Genome Browser. Sequence determination and base pair variant detection were performed at the McGill University and Genome
Quebec Innovation Centre in Montreal, Canada (www.genomequebecplatforms.com/mcgill/) on a 3730XL DNA Analyzer System. The
human SHANK3 cDNA sequence was kindly provided by Stephen Scherer [Moessner et al., [2007]]. RT-PCR was performed on mRNA
isolated from cultured lymphoblastoid cells by using a forward primer targeting the exon 15/16 junction: 5-TTCCTCATCGAGGTGAACG-
3 and a reverse primer targeting the exon 20/21 junction: 5-AGCTTCTCGTCCTCCCCTAC-3. Approximately 106 lymphoblastoid cells
were lysed in TRIZOL® Reagent (Invitrogen, Carlsbad, CA) and total RNA was extracted according to the protocol of manufacturer . We
obtained 150 µg of total RNA. As SHANK3 is not well expressed in lymphoblastoid cells [Durand et al., [2007]], we purified mRNA from
150 µg of total RNA before the reverse transcription by using Oligotex protocol (Qiagen, Valencia, CA). After this purification, the mRNA
was reverse transcribed into cDNA using M-MLV RT (Moloney murine leukemia virus reverse transcriptase, Invitrogen): 29 µl of mRNA (
2-5 µg), 1 µl random hexamer 1 µg/µl (GE Healthcare, Piscataway, NJ), 65°C for 3 min, 10 µl first strand buffer 5X (Invitrogen), 5 µl of
DTT 0.1 M (Invitrogen), 1 µl of RNAguardTM Rnase inhibitor porcine 32.2 mU/µl (GE Healthcare), 1 µl of M-MLV RT enzyme 200 U/µl
(Invitrogen), 2 µl of dNTP 25 mM (Invitrogen), 37°C for 1 hr. 50 µl of RT are diluted in a final volume of 100 µl.
Eight missense variants and one potential splice site mutation were identified during the screen (Table I). Four of the missenses were
identified in both patient and control samples: the I245T missense was previously reported as rs9616915, at allelic frequencies
comparable to our study; A721T was found in 5-6% of samples; P1654T was previously identified in normal control samples [Durand et al.,
[2007]]; and R1298K was found in one ASD and one control sample. Two missenses were found only in single control samples (R215C,
which maps within the third Ankyrin repeat and A1324T). The A224T missense identified in one of our ASD samples was previously
identified in one control sample [Durand et al., [2007]]. The number of variants identified is consistent with previous studies, considering
we did not screen these samples for CNVs. The L68P missense was identified in one female patient with pervasive developmental
disorder not otherwise specified, and was inherited from the father of patient who was diagnosed with epilepsy. The proband did not have
seizures. There is also a paternal cousin diagnosed with dysphasia. The mother had pre-eclampsia at 38 weeks of pregnancy and the
pregnancy was provoked at 39 weeks. The ASQ score for this patient was 16 (score > 15 = ASD). The proband's development was
considered normal from birth to age one. She walked at 13-14 months. She stopped saying the few words learned at one and a half years
of age. Suspicion of ASD came around 18 months of age when parents noted a language deficiency.
Table I. SHANK3 Non-Synonymous Variants Identified in ASD and Control Subjects
Exona
Nucleotide
changeb
Amino acid
changeb
Occurrence
Transmission
from
Known
SNP
ASD
(n = 427)
CTRL
(n = 190)
2 c.203T>C L68P 1 0 Father No
6 c.643C>T R215C 0 1 Mother No
6 c.670G>A A224T 1 0 Not done Durand et
al.
6 c.734T>C I245T 270 124 Not done rs9616915
19 c.2161G>A A721T 28 10 Not done No
19 c.2265C +1delG S755Sfs × 1 1 0 de novo No
21 c.3893G>A R1298K 1 1 Mother No
21 c.3970G>A A1324T 0 1 Mother No
24 c.4960C>A P1654T 2 3 Not done Durand et
al.
common variants. Furthermore, the few genes that have been found to definitely predispose to ASD explain only a small fraction of cases
[Jamain et al., [2003]; Durand et al., [2007]]. The similar ASD incidence across different populations, in spite of a low reproductive fitness,
argues in favor of a novel mutation scenario. A large body of neurobiological studies indicate that synaptic dysfunctions occur in ASD:
reduced neuronal size and shortened dendritic patterns are a few examples [Raymond et al., [1996]; Kemper and Bauman, [1998]]. In
addition, the identification of mutations in the postsynaptic cell adhesion neuroligin three and four genes in autistic patients further support
this hypothesis [Jamain et al., [2003]].
A cohort of 427 ASD subjects (66 females: 361 males) and 190 ethnically matched controls were screened for the entire coding region and
intronic splice junctions of the SHANK3 gene except exon 11, which was problematic even after numerous primer redesigns and PCR
amplification conditions, as reported by others [Wilson et al., [2003]; Moessner et al., [2007]]. Diagnostic and selection criteria for the ASD
subjects are described in detail elsewhere [Gauthier et al., [2005]]. Briefly, all subjects were diagnosed using the Diagnostic and Statistical
Manual of Mental Disorders criteria. Depending on the recruitment site, Autism Diagnostic Interview-Revised and the Autism Diagnostic
Observation Schedule were used. In addition, the Autism Screening Questionnaire (ASQ) was also completed for all our subjects. We
excluded patients with an estimated mental age <18 months, a diagnosis of Rett syndrome or Childhood Disintegrative Disorder and
patients with evidence of any psychiatric and neurological conditions including: birth anoxia, rubella during pregnancy, fragile-X disorder,
encephalitis, phenylketonuria, tuberous sclerosis, Tourette and West syndromes. Primer sequences were designed using ExonPrimer from
UCSC Genome Browser. Sequence determination and base pair variant detection were performed at the McGill University and Genome
Quebec Innovation Centre in Montreal, Canada (www.genomequebecplatforms.com/mcgill/) on a 3730XL DNA Analyzer System. The
human SHANK3 cDNA sequence was kindly provided by Stephen Scherer [Moessner et al., [2007]]. RT-PCR was performed on mRNA
isolated from cultured lymphoblastoid cells by using a forward primer targeting the exon 15/16 junction: 5-TTCCTCATCGAGGTGAACG-
3 and a reverse primer targeting the exon 20/21 junction: 5-AGCTTCTCGTCCTCCCCTAC-3. Approximately 106 lymphoblastoid cells
were lysed in TRIZOL® Reagent (Invitrogen, Carlsbad, CA) and total RNA was extracted according to the protocol of manufacturer . We
obtained 150 µg of total RNA. As SHANK3 is not well expressed in lymphoblastoid cells [Durand et al., [2007]], we purified mRNA from
150 µg of total RNA before the reverse transcription by using Oligotex protocol (Qiagen, Valencia, CA). After this purification, the mRNA
was reverse transcribed into cDNA using M-MLV RT (Moloney murine leukemia virus reverse transcriptase, Invitrogen): 29 µl of mRNA (
2-5 µg), 1 µl random hexamer 1 µg/µl (GE Healthcare, Piscataway, NJ), 65°C for 3 min, 10 µl first strand buffer 5X (Invitrogen), 5 µl of
DTT 0.1 M (Invitrogen), 1 µl of RNAguardTM Rnase inhibitor porcine 32.2 mU/µl (GE Healthcare), 1 µl of M-MLV RT enzyme 200 U/µl
(Invitrogen), 2 µl of dNTP 25 mM (Invitrogen), 37°C for 1 hr. 50 µl of RT are diluted in a final volume of 100 µl.
Eight missense variants and one potential splice site mutation were identified during the screen (Table I). Four of the missenses were
identified in both patient and control samples: the I245T missense was previously reported as rs9616915, at allelic frequencies
comparable to our study; A721T was found in 5-6% of samples; P1654T was previously identified in normal control samples [Durand et al.,
[2007]]; and R1298K was found in one ASD and one control sample. Two missenses were found only in single control samples (R215C,
which maps within the third Ankyrin repeat and A1324T). The A224T missense identified in one of our ASD samples was previously
identified in one control sample [Durand et al., [2007]]. The number of variants identified is consistent with previous studies, considering
we did not screen these samples for CNVs. The L68P missense was identified in one female patient with pervasive developmental
disorder not otherwise specified, and was inherited from the father of patient who was diagnosed with epilepsy. The proband did not have
seizures. There is also a paternal cousin diagnosed with dysphasia. The mother had pre-eclampsia at 38 weeks of pregnancy and the
pregnancy was provoked at 39 weeks. The ASQ score for this patient was 16 (score > 15 = ASD). The proband's development was
considered normal from birth to age one. She walked at 13-14 months. She stopped saying the few words learned at one and a half years
of age. Suspicion of ASD came around 18 months of age when parents noted a language deficiency.
Table I. SHANK3 Non-Synonymous Variants Identified in ASD and Control Subjects
Exona
Nucleotide
changeb
Amino acid
changeb
Occurrence
Transmission
from
Known
SNP
ASD
(n = 427)
CTRL
(n = 190)
2 c.203T>C L68P 1 0 Father No
6 c.643C>T R215C 0 1 Mother No
6 c.670G>A A224T 1 0 Not done Durand et
al.
6 c.734T>C I245T 270 124 Not done rs9616915
19 c.2161G>A A721T 28 10 Not done No
19 c.2265C +1delG S755Sfs × 1 1 0 de novo No
21 c.3893G>A R1298K 1 1 Mother No
21 c.3970G>A A1324T 0 1 Mother No
24 c.4960C>A P1654T 2 3 Not done Durand et
al.
a Exon numbering is according to Wilson et al. [2003].
b cDNA sequence as described by Moessner et al. [2007].
Page 2 sur 4
Wiley InterScience :: Article Full Text HTML
The Leucine 68 residue is 100% conserved from vertebrates to sea urchin, C. elegans, and insects, and is also conserved between
SHANK3 and its close paralogs SHANK1 and SHANK2 (Fig. 1). Secondary structure modeling of this region of the SHANK3 protein using
nnPredict (http://www.cmpharm.ucsf.edu/ nomi/nnpredict.html) suggests that the Leu68 residue lies in an alpha-helical domain. Given
this high level of conservation, that a substitution of the leucine for a proline at this position would be predicted to disrupt an alpha-helical
domain, and that the missense is not found in normal control samples suggests that this missense may be a cause of ASD in this affected
individual. However, functional studies will be required to confirm that this mutation is indeed pathogenic.
The splicing variant was examined in more detail. It was found in a male patient diagnosed with autism disorder, but was absent from
blood DNA samples from either of the biological parents (verified by DNA fingerprinting using nine highly informative microsatellite
markers). The ASQ score for this patient was 23. The delivery was normal at birth. He sat at 6 months of age, walked at 15 months and
said his first words at 12-13 months of age. Both parents are non-affected by ASD and there is no known history of ASD in this family. This
therefore constitutes a de novo mutation in this affected individual. Deletion of a G residue from the highly conserved splice donor site
would be predicted to lead to aberrant splicing of the transcript (Fig. 1A). This was confirmed using RT-PCR (Fig. 2) of mRNA isolated
from a lymphoblastoid cell line derived from the affected individual. In addition to the expected wild-type 483 bp product, a 559 bp product
could be amplified from the mRNA of patient, but not from a control mRNA sample. DNA sequencing of the RT-PCR products showed the
expected 483 bp wild-type fragment, whereas the 559 bp product contained an additional 76 bp of sequence corresponding to the 5end of
intron 19. Thus, the 1 bp deletion leads to skipping of the appropriate splice donor site, and use of a cryptic splice donor site downstream
in intron 19. The aberrant transcript is predicted to encode a prematurely truncated SHANK3 peptide of 755 amino acid residues, and
lacking a large portion of the C-terminal domains.
Since the SHANK3 protein acts as a scaffolding protein, such a prematurely truncated peptide could act in a dominant negative fashion in
cells where it is expressed. Alternately, the aberrantly spliced transcript may be degraded, leading to reduced levels of SHANK3 protein.
This would be in agreement with Durand et al. [2007] who showed that abnormal SHANK3 gene dosage or premature truncation of the
peptide are associated with ASD [Durand et al., [2007]]. We have also detected rare non-synonymous variants both in ASD patients and
controls. The potential role of these remains to be determined.
In summary, we have identified novel mutations in the SHANK3 gene in ASD patients that underline the role of this gene in ASD. Together
with previous observations, these data support our de novo mutation hypothesis for ASD. Finally, these new mutations further support the
notion that ASD is caused by dysfunction of synaptic proteins.
Acknowledgements
We would like to thank the families who made this research possible by participating in our study. Thanks to the Synapse-to-Disease
teams for their work. This work was funded by Genome Canada and Genome Quebec.
Figure 1. A: Peptide sequence alignment of a portion of the SHANK3 protein from
different species (orthologous to the human residues 29-88) showing conservation of
the Leucine 68 residue (asterisk). Predicted secondary structure using nnPredict is
shown below the sequence from SHANK1 (H = helix; E = strand; - = no prediction). B:
Sequence of the splice donor and acceptor sites for intron 19 with flanking
sequences for wilt-type (WT) and mutant (c.2256C-1delG) alleles. Deletion of the first
base of the intron causes aberrant splicing, and premature truncation of the peptide
after codon 755. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
[Normal View 94K | Magnified View 189K]
Figure 2. mRNA expression of the human SHANK3 gene isolated from a
lymphoblastoid cell line derived from the affected individual carrying the splice site
deletion (Proband) and one control individual. The 483 bp band corresponds to the
correctly spliced normal allele in both the control and the proband, whereas the 559
bp band seen only in the proband contained an additional 76 bp of sequence
corresponding to the 5 end of intron 19.
[Normal View 23K | Magnified View 28K]
REFERENCES
Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, et al.
2007. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat
Genet 39(1): 25-27. Links
Gauthier J, Bonnel A, St-Onge J, Karemera L, Laurent S, Mottron L, Fombonne E, Joober R, Rouleau GA. 2005. NLGN3/NLGN4 gene
mutations are not responsible for autism in the Quebec population. Am J Med Genet B Neuropsychiatr Genet 132(1): 74-75. Links
Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, et al. 2003.
Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1): 27-29. Links
Kemper TL, Bauman M. 1998. Neuropathology of infantile autism. J Neuropathol Exp Neurol 57(7): 645-652. Links
Page 3 sur 4
Wiley InterScience :: Article Full Text HTML
Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, et al. 2007.
Contribution of SHANK3 Mutations to Autism Spectrum Disorder. Am J Hum Genet 81(6): 1289-1297. Links
Muhle R, Trentacoste SV, Rapin I. 2004. The genetics of autism. Pediatrics 113(5): 472-486. Links
Raymond GV, Bauman ML, Kemper TL. 1996. Hippocampus in autism: a Golgi analysis. Acta Neuropathol (Berl) 91(1): 117-119. Links
Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, Hu S, Marshall J, McDermid HE. 2003. Molecular characterisation
of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med
Genet 40(8): 575-584. Links
Page 4 sur 4
Wiley InterScience :: Article Full Text HTML
Bon O.K, c'est le bordel en faisant le copier coller mais si quelqu'un a donc BEAUCOUP de courage je peux l'envoyer par mail en format PDF...
papa de Lena (Ted)
et expert en orthographe (mdr)...
et expert en orthographe (mdr)...
-
- Assidu
- Messages : 235
- Enregistré le : mercredi 5 mars 2008 à 21:11
La 1ere Strophe:
Le Spectre du desordre autistic (ASD) est une maladie du developpement neuronal caracterise par un comportement complexe et des defisciences cognitives. Un certain nombre d'etudes ont confirme que les facteurs genetiques jouent un role important dans l'ASD. Notre strategie genetique pour l'ASD est de sequence systematiquement un grand nombtre de genes dans l'individu autiste, en se oncentrant sur l'encodage des proteines synapses. Cette strategie est base sur 2 hypothese: (1) que de nouvelles mutations dans differnet genes peuvent etre comptabilise comme une parite significative dee l';ASD et (2)que la mutation dans les genes sysnaptique sont responmsabeles pour l'ASD phenotype. Il est connu que l'ASD est hautement heterogene et ne peut pas etre expliquer par le peu de Novel de nuoveo SHANK3 mutations de patients autistiques....
(je suis au boulot... je continue plus tard...)
Le Spectre du desordre autistic (ASD) est une maladie du developpement neuronal caracterise par un comportement complexe et des defisciences cognitives. Un certain nombre d'etudes ont confirme que les facteurs genetiques jouent un role important dans l'ASD. Notre strategie genetique pour l'ASD est de sequence systematiquement un grand nombtre de genes dans l'individu autiste, en se oncentrant sur l'encodage des proteines synapses. Cette strategie est base sur 2 hypothese: (1) que de nouvelles mutations dans differnet genes peuvent etre comptabilise comme une parite significative dee l';ASD et (2)que la mutation dans les genes sysnaptique sont responmsabeles pour l'ASD phenotype. Il est connu que l'ASD est hautement heterogene et ne peut pas etre expliquer par le peu de Novel de nuoveo SHANK3 mutations de patients autistiques....
(je suis au boulot... je continue plus tard...)
-
- Familier
- Messages : 183
- Enregistré le : dimanche 13 avril 2008 à 21:07
- Localisation : grenoble
Merci
Une âme charitable...
Merci
ça a l'air assez intéressant, j'attend la suite avec impatience...
Tu veux que je t'envois le fichier PDF (plus facile à lire/ traduire) ?
Merci
ça a l'air assez intéressant, j'attend la suite avec impatience...
Tu veux que je t'envois le fichier PDF (plus facile à lire/ traduire) ?
papa de Lena (Ted)
et expert en orthographe (mdr)...
et expert en orthographe (mdr)...
-
- Assidu
- Messages : 235
- Enregistré le : mercredi 5 mars 2008 à 21:11
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo
mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene
discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190 controls. Here, we report the identification
of two putative causative mutations: one being a de novo deletion at an intronic donor splice site and one missense transmitted from an
epileptic father. We were able to confirm the deleterious effect of the splice site deletion by RT-PCR using mRNA extracted from cultured
lymphoblastoid cells. The missense mutation, a leucine to proline at amino acid position 68, is perfectly conserved across all species
examined, and would be predicted to disrupt an alpha-helical domain. These results further support the role of SHANK3 gene disruption
in the etiology of ASD. © 2008 Wiley-Liss, Inc.
Un nombre d'etudes ont confirme que les facteurs genetiques jouent un role important dans le spectre des des desordres autistes (ASD). De plus recentes mutations de novo dans le gene SHANK3, un echaffaudage de protein synaptiques, ont ete associes avec les phonotype ASD. En partie de notre strategie, nous avons sequence le gene SHANK3 dans une cohorte de 427 sujets et 190 controles. La, nous rapportons l'identification de 2 mutations putatives ausatives: une etant une suppression a un...
pfff ca devient trop technique la j'y comprends plus rien
au secours qq un d'autres...
mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene
discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190 controls. Here, we report the identification
of two putative causative mutations: one being a de novo deletion at an intronic donor splice site and one missense transmitted from an
epileptic father. We were able to confirm the deleterious effect of the splice site deletion by RT-PCR using mRNA extracted from cultured
lymphoblastoid cells. The missense mutation, a leucine to proline at amino acid position 68, is perfectly conserved across all species
examined, and would be predicted to disrupt an alpha-helical domain. These results further support the role of SHANK3 gene disruption
in the etiology of ASD. © 2008 Wiley-Liss, Inc.
Un nombre d'etudes ont confirme que les facteurs genetiques jouent un role important dans le spectre des des desordres autistes (ASD). De plus recentes mutations de novo dans le gene SHANK3, un echaffaudage de protein synaptiques, ont ete associes avec les phonotype ASD. En partie de notre strategie, nous avons sequence le gene SHANK3 dans une cohorte de 427 sujets et 190 controles. La, nous rapportons l'identification de 2 mutations putatives ausatives: une etant une suppression a un...
pfff ca devient trop technique la j'y comprends plus rien
au secours qq un d'autres...
-
- Intarissable
- Messages : 5139
- Enregistré le : samedi 30 décembre 2006 à 22:05
- Localisation : Yvelines
-
- Intarissable
- Messages : 5139
- Enregistré le : samedi 30 décembre 2006 à 22:05
- Localisation : Yvelines
-
- Familier
- Messages : 183
- Enregistré le : dimanche 13 avril 2008 à 21:07
- Localisation : grenoble
-
- Intarissable
- Messages : 5139
- Enregistré le : samedi 30 décembre 2006 à 22:05
- Localisation : Yvelines
Pierre, j'ai commencé (je n'ai pas eu du temps, comme je t'ai expliqué j'ai des parents des deux cotés a l'hopital!!!)
Si tu veux bien me laisser les vacances, je travaille dessus.
J'ai fait un premier jet, mais il me faut quelques details medicale americain, par example SHANKS, je pense que c'est le mot utilisé pour "gene" dans le sens que Shank veut dire "echevette" comme en broderie, et je fais le liaison avec la forme graphique d'une gene.
Le texte est moyennement interessant, car en parle de mutation de gene, (ce que Loic et son pere a )et surtout de gene avec non sense (alteration) des acides aminés, ce qui est fait en general en examens.
Pendant 1 mois je n'aurais pas d'internet, mais j'essayerais de revenir avant de partir, car on a eu un appel aujourd'hui, avec certains resultats d'examens (je ne sais pas lesquelles, on a fait tellement)
L'interet que j'ai trouvé dans le texte est le manque de genetique hereditaire, mais leurs recherches etaient trés limités, en excluant des syndromes tres proches d'ASD comme Tourettes, Rhetts, X Fragile, et toute personne avec des "probleme psychiatrique" autant dire qu'ils ont bien selectionner leur patients.
En tout cas j'essayerais de poster ce qui est deja traduit, mais il faudra le remanier, car il faudra deja traduire de l'americain vers l'anglais
Si tu veux bien me laisser les vacances, je travaille dessus.
J'ai fait un premier jet, mais il me faut quelques details medicale americain, par example SHANKS, je pense que c'est le mot utilisé pour "gene" dans le sens que Shank veut dire "echevette" comme en broderie, et je fais le liaison avec la forme graphique d'une gene.
Le texte est moyennement interessant, car en parle de mutation de gene, (ce que Loic et son pere a )et surtout de gene avec non sense (alteration) des acides aminés, ce qui est fait en general en examens.
Pendant 1 mois je n'aurais pas d'internet, mais j'essayerais de revenir avant de partir, car on a eu un appel aujourd'hui, avec certains resultats d'examens (je ne sais pas lesquelles, on a fait tellement)
L'interet que j'ai trouvé dans le texte est le manque de genetique hereditaire, mais leurs recherches etaient trés limités, en excluant des syndromes tres proches d'ASD comme Tourettes, Rhetts, X Fragile, et toute personne avec des "probleme psychiatrique" autant dire qu'ils ont bien selectionner leur patients.
En tout cas j'essayerais de poster ce qui est deja traduit, mais il faudra le remanier, car il faudra deja traduire de l'americain vers l'anglais
Suzanne, la vieille qui blatere, maman de Loic 29 ans
-
- Familier
- Messages : 183
- Enregistré le : dimanche 13 avril 2008 à 21:07
- Localisation : grenoble
pas d'inquiétude concernant le temps, traduit le tranquillement et il sera fini... quand il sera fini !
Merci en tout cas pour ton aide précieuse et j'espère de tout coeur que les soucis médicaux vont se tasser au plus vite pour ta famille... histoire que tu puisses quand même profiter de tes vacances !!!
Merci encore et à très bientot
Merci en tout cas pour ton aide précieuse et j'espère de tout coeur que les soucis médicaux vont se tasser au plus vite pour ta famille... histoire que tu puisses quand même profiter de tes vacances !!!
Merci encore et à très bientot
papa de Lena (Ted)
et expert en orthographe (mdr)...
et expert en orthographe (mdr)...
-
- Intarissable
- Messages : 5139
- Enregistré le : samedi 30 décembre 2006 à 22:05
- Localisation : Yvelines
Merci Pierre,
Je le ferais pendant les vacances, on ne sait jamais, je pourrais avoir une aide Espagnol
Le texte me trotte dans la tete, et bizarrement j'etais contacté aujourd'hui pour un entretien (plutot Loic!!) pour poursuivre les recherches, et surtout une suivie des progrés. J'en parlerais un peu plus en septembre quand je sais de quoi ca retourne.
Bonnes vacances a tous, on part quand meme, mais avec des billets d'avion d'avance!!!
Je le ferais pendant les vacances, on ne sait jamais, je pourrais avoir une aide Espagnol
Le texte me trotte dans la tete, et bizarrement j'etais contacté aujourd'hui pour un entretien (plutot Loic!!) pour poursuivre les recherches, et surtout une suivie des progrés. J'en parlerais un peu plus en septembre quand je sais de quoi ca retourne.
Bonnes vacances a tous, on part quand meme, mais avec des billets d'avion d'avance!!!
Suzanne, la vieille qui blatere, maman de Loic 29 ans
-
- Intarissable
- Messages : 5139
- Enregistré le : samedi 30 décembre 2006 à 22:05
- Localisation : Yvelines
Pour ceux et celles qui sont interessé, j'ai envoyé une traduction a Pierre directement.
En le faisant, j'ai trouvé quelques liens interessants,
http://www.u930.tours.inserm.fr/m_pages.asp?page=598
http://www.cerveautisme.biz/mutations.html
http://www.ch-saint-egreve.fr/newsletter%202006.pdf
http://www.psychanalyse-en-ligne.org/in ... 40-autisme
http://www.canalacademie.com/Autisme-la ... uveau.html
En le faisant, j'ai trouvé quelques liens interessants,
http://www.u930.tours.inserm.fr/m_pages.asp?page=598
http://www.cerveautisme.biz/mutations.html
http://www.ch-saint-egreve.fr/newsletter%202006.pdf
http://www.psychanalyse-en-ligne.org/in ... 40-autisme
http://www.canalacademie.com/Autisme-la ... uveau.html
Suzanne, la vieille qui blatere, maman de Loic 29 ans
-
- Familier
- Messages : 183
- Enregistré le : dimanche 13 avril 2008 à 21:07
- Localisation : grenoble
Alors voilà la traduction fait par Sue que je remercie GRANDEMENT ! ! !
Le texte est assez scientifique, je n'ai pas encore fini de le décrypter mais je pense qu'il y a des gens bien plus calé que moi sur la génétique (comme toi Sue par exemple). Les avis sont bienvenue...
Un certain nombre d'études ont confirmé que les facteurs génétiques jouent un rôle important dans des troubles du spectre autistique (TSA). Plus récemment, des mutations de novo dans le Shank3 gène, une protéine synaptique chafaudage, ont été associés à l'ASD (TSA) phénotype. Dans le cadre de notre stratégie de découverte des gènes, nous avons sequencé le gène Shank3 dans une cohorte de 427 ASD (TSA) et 190 sujets contrôles. Ici, nous déclarons l'identification de deux mutations en cause putatif: l'un étant une suppression de novo à un site d'épissage intronique des donateurs et l’autre, une missense transmis d’un père épileptique. Nous avons été en mesure de confirmer l'effet de la suppression du site d'épissage par RT-PCR utilisant des ARNm extraits des cellules en culture lymphoblastoid. Le mutation missense, une leucine à proline à la position 68 d'acides aminés, est parfaitement conservé à travers toutes les espèces examinées, et on pourrait prevoir une perturbation dans la domaine alpha-hélice. Ces résultats soutenir davantage le rôle du gène Shank3 perturbation dans l'étiologie d‘ASD.
L'autisme est un trouble neurologique d’enfance avec une forte composante génétique, mais l'identification de loci susceptible en autisme reste insaisissable. Nous avons étudié 180 autisme probands et 372 sujets témoins par série d'hybridation génomique comparative (aCGH) à l'aide d'un ensemble de 19K-chemin carrelage génome bactérien chromosome artificiel microréseau afin d'identifi er submicroscopic réarrangements chromosomiques spécifiques à l'autisme. Nous avons découvert un micro 16p11.2 renouvelables dans deux probands avec l'autisme et aucun des contrôles. La suppression s'étend sur environ 500 kb et est flanqué d'environ 147 kb segmentaire doubles emplois (SDS) qui sont> 99% identique, une caractéristique commune de génomique troubles. Nous avons évalué la fréquence de ce nouveau désordre génomique autisme par un dépistage supplémentaire 532 probands et 465 contrôles par PCR quantitative et a identifié deux autres patients, mais pas de contrôle avec le micro, ce qui indique une fréquence combinée de 0,6% (4 / 712 l'autisme contre 0 / 837 contrôles; test exact de Fisher P = 0,044). Nous avons confirmé toutes les 16p11.2 suppressions de fluorescence en utilisant l'hybridation in situ, des analyses et des microsatellites aCGH, et cartographiés approximatif suppression d'arrêt aux bords du éT d'accompagnement personnalisé en utilisant une conception de haute densité oligonucléotide micropuce. Analyse bioinformatique a localisé 12 des 25 gènes dans le micro aux noeuds dans un réseau d'interaction. Nous avons effectué des analyses phénotype et n'a trouvé aucune marquants qui distinguent les patients avec le micro 16p11.2 comme un sous-type autisme. Notre travail rapporte la première fréquence, breakpoint, bioinformatique et phénotypique d'une analyse de novo16p11.2 microdélétion qui r eprésente un des plus récurrents génomique troubles associés à l'autisme à ce jour.
Variation structurels (nombre de copies variation [CNV], y compris les suppressions et les doubles emplois, de transfert, d'inversion) de chromosomes a été identifié chez certaines personnes avec des troubles du spectre autistique (TSA), mais l’exacte rôle étiologique est inconnue. Nous avons procédé à l'échelle du génome pour l'évaluation des anomalies structurelles dans 427 cas sans OPAS par un seul nucléotide polymorphisme puces et caryotype. Avec puces, nous avons découvert 277 déséquilibrée CNVs dans 44% des familles OPAS pas présent dans 500 contrôles (et ré-examinée dans un autre 1152 contrôles). Les Caryotypes ont détecté des changement equilibré supplémentaires. Bien que la plupart des variantes ont été héritées, nous avons constaté un total de 27 cas avec des modifications de novo, et dans trois (11%) de ces personnes, deux ou plusieurs nouvelles variantes ont été observées. CNVs de novo ont été trouvés dans environ 7% et d'environ 2% des familles idiopathique ayant un enfant, ou deux ou plusieurs frères et sœurs ASD, respectivement. Nous avons également détecté 13 loci avec CNV recurrent/chevauchement dans des cas indépendants et sur ces sites, suppressions et les doubles emplois affectant un même gène (s) dans des personn es différentes et parfois dans des porteurs asymptomatiques ont également été trouvés. Nonobstant la complexité, nos résultats impliquent davantage les Shank3-NLGN4-NRXN1 postsynaptique densité des gènes et identifient de nouveaux loci à DPP6-DPP10-PCDH9 (synapse complexe), ANKRD11, DPYD, PTCHD1, 15q24, entre autres, pour un rôle dans la susceptibilité OPAS. Notre résultat plus convaincant à découvert CNV 16p11.2 (p = 0,002) (dont les caractéristiques d'un trouble de génomique) à environ 1% de fréquence. Certaines de l'OPAS régions ont également été commune à l'arriération mentale loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup. Des variantes structurelles ont été trouvés a une frequence suffisamment haute ayant une influence sur OPAS pour suggerer qu’une analyse cytogénétique et des microréseaux doit etre considéré dans un travail clinique de routine.
Shank3 Le gène a été précédemment lié à la suppression 22Q13, dans lequel une partie du bras long (q) du chromosome 22 est manquant. Les caractéristiques inclus une croissance rapide, retard de langage, une dysmorphie legere , haploin suffisance (incapacité du gène en cause, dans ce cas Shank3 et PROSAP2, produit suffisamment de protéines pour le fonctionnement normal). Des études ont indiqué que l'incapacité à produire des quantités suffisantes de ces protéines peut être responsable de la plupart des symptômes neurologiques. (Pour plus d'informations. 22Q13 de suppression, de voir www.22q13.org) Une grande partie de cette recherche a été menée par le Dr Heatehr McDermid (Université de l'Alberta au Canada) et M. Phelan Katy Greenwood du Centre de génétique, d'où le surnom Phelan - Syndrome McDermid. Les tests de ces variantes génétiques sont effectués par Arsa Probes (arylsulfatase A) ou FISH (Fluorescent In-Situ Hybridization).
Des mutations dans Shank3, qui code une protéine synaptique échafaudage, ont été décrites chez les sujets ayant un des troubles du spectre autistique (TSA). Pour évaluer la contribution quantitative de Shank3 à la pathogenèse de l'autisme, nous avons déterminé la fréquence de séquences d'ADN et la copie en plusieurs variantes de ce gène dans ASD-400 sujets atteints établi au Canada. Une mutation de novo et deux suppressions de gènes ont été découverts, ce qui indique une contribution de 0,75% dans cette cohorte. Un autre Shank3 suppression a été marquée dans 2 freres affectés par ASD d'une autre collection, ce qui porte le nombre total de public ations dans des mutations sans ASD-les familles touchées à sept. Les données cumulées fournies un appui que haploin sufficence de Shank3 peut causer une forme monogénique de l'autisme à une fréquence suffisante pour justifier l'examen clinique des tests de diagnostic.
Le texte est assez scientifique, je n'ai pas encore fini de le décrypter mais je pense qu'il y a des gens bien plus calé que moi sur la génétique (comme toi Sue par exemple). Les avis sont bienvenue...
Un certain nombre d'études ont confirmé que les facteurs génétiques jouent un rôle important dans des troubles du spectre autistique (TSA). Plus récemment, des mutations de novo dans le Shank3 gène, une protéine synaptique chafaudage, ont été associés à l'ASD (TSA) phénotype. Dans le cadre de notre stratégie de découverte des gènes, nous avons sequencé le gène Shank3 dans une cohorte de 427 ASD (TSA) et 190 sujets contrôles. Ici, nous déclarons l'identification de deux mutations en cause putatif: l'un étant une suppression de novo à un site d'épissage intronique des donateurs et l’autre, une missense transmis d’un père épileptique. Nous avons été en mesure de confirmer l'effet de la suppression du site d'épissage par RT-PCR utilisant des ARNm extraits des cellules en culture lymphoblastoid. Le mutation missense, une leucine à proline à la position 68 d'acides aminés, est parfaitement conservé à travers toutes les espèces examinées, et on pourrait prevoir une perturbation dans la domaine alpha-hélice. Ces résultats soutenir davantage le rôle du gène Shank3 perturbation dans l'étiologie d‘ASD.
L'autisme est un trouble neurologique d’enfance avec une forte composante génétique, mais l'identification de loci susceptible en autisme reste insaisissable. Nous avons étudié 180 autisme probands et 372 sujets témoins par série d'hybridation génomique comparative (aCGH) à l'aide d'un ensemble de 19K-chemin carrelage génome bactérien chromosome artificiel microréseau afin d'identifi er submicroscopic réarrangements chromosomiques spécifiques à l'autisme. Nous avons découvert un micro 16p11.2 renouvelables dans deux probands avec l'autisme et aucun des contrôles. La suppression s'étend sur environ 500 kb et est flanqué d'environ 147 kb segmentaire doubles emplois (SDS) qui sont> 99% identique, une caractéristique commune de génomique troubles. Nous avons évalué la fréquence de ce nouveau désordre génomique autisme par un dépistage supplémentaire 532 probands et 465 contrôles par PCR quantitative et a identifié deux autres patients, mais pas de contrôle avec le micro, ce qui indique une fréquence combinée de 0,6% (4 / 712 l'autisme contre 0 / 837 contrôles; test exact de Fisher P = 0,044). Nous avons confirmé toutes les 16p11.2 suppressions de fluorescence en utilisant l'hybridation in situ, des analyses et des microsatellites aCGH, et cartographiés approximatif suppression d'arrêt aux bords du éT d'accompagnement personnalisé en utilisant une conception de haute densité oligonucléotide micropuce. Analyse bioinformatique a localisé 12 des 25 gènes dans le micro aux noeuds dans un réseau d'interaction. Nous avons effectué des analyses phénotype et n'a trouvé aucune marquants qui distinguent les patients avec le micro 16p11.2 comme un sous-type autisme. Notre travail rapporte la première fréquence, breakpoint, bioinformatique et phénotypique d'une analyse de novo16p11.2 microdélétion qui r eprésente un des plus récurrents génomique troubles associés à l'autisme à ce jour.
Variation structurels (nombre de copies variation [CNV], y compris les suppressions et les doubles emplois, de transfert, d'inversion) de chromosomes a été identifié chez certaines personnes avec des troubles du spectre autistique (TSA), mais l’exacte rôle étiologique est inconnue. Nous avons procédé à l'échelle du génome pour l'évaluation des anomalies structurelles dans 427 cas sans OPAS par un seul nucléotide polymorphisme puces et caryotype. Avec puces, nous avons découvert 277 déséquilibrée CNVs dans 44% des familles OPAS pas présent dans 500 contrôles (et ré-examinée dans un autre 1152 contrôles). Les Caryotypes ont détecté des changement equilibré supplémentaires. Bien que la plupart des variantes ont été héritées, nous avons constaté un total de 27 cas avec des modifications de novo, et dans trois (11%) de ces personnes, deux ou plusieurs nouvelles variantes ont été observées. CNVs de novo ont été trouvés dans environ 7% et d'environ 2% des familles idiopathique ayant un enfant, ou deux ou plusieurs frères et sœurs ASD, respectivement. Nous avons également détecté 13 loci avec CNV recurrent/chevauchement dans des cas indépendants et sur ces sites, suppressions et les doubles emplois affectant un même gène (s) dans des personn es différentes et parfois dans des porteurs asymptomatiques ont également été trouvés. Nonobstant la complexité, nos résultats impliquent davantage les Shank3-NLGN4-NRXN1 postsynaptique densité des gènes et identifient de nouveaux loci à DPP6-DPP10-PCDH9 (synapse complexe), ANKRD11, DPYD, PTCHD1, 15q24, entre autres, pour un rôle dans la susceptibilité OPAS. Notre résultat plus convaincant à découvert CNV 16p11.2 (p = 0,002) (dont les caractéristiques d'un trouble de génomique) à environ 1% de fréquence. Certaines de l'OPAS régions ont également été commune à l'arriération mentale loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup. Des variantes structurelles ont été trouvés a une frequence suffisamment haute ayant une influence sur OPAS pour suggerer qu’une analyse cytogénétique et des microréseaux doit etre considéré dans un travail clinique de routine.
Shank3 Le gène a été précédemment lié à la suppression 22Q13, dans lequel une partie du bras long (q) du chromosome 22 est manquant. Les caractéristiques inclus une croissance rapide, retard de langage, une dysmorphie legere , haploin suffisance (incapacité du gène en cause, dans ce cas Shank3 et PROSAP2, produit suffisamment de protéines pour le fonctionnement normal). Des études ont indiqué que l'incapacité à produire des quantités suffisantes de ces protéines peut être responsable de la plupart des symptômes neurologiques. (Pour plus d'informations. 22Q13 de suppression, de voir www.22q13.org) Une grande partie de cette recherche a été menée par le Dr Heatehr McDermid (Université de l'Alberta au Canada) et M. Phelan Katy Greenwood du Centre de génétique, d'où le surnom Phelan - Syndrome McDermid. Les tests de ces variantes génétiques sont effectués par Arsa Probes (arylsulfatase A) ou FISH (Fluorescent In-Situ Hybridization).
Des mutations dans Shank3, qui code une protéine synaptique échafaudage, ont été décrites chez les sujets ayant un des troubles du spectre autistique (TSA). Pour évaluer la contribution quantitative de Shank3 à la pathogenèse de l'autisme, nous avons déterminé la fréquence de séquences d'ADN et la copie en plusieurs variantes de ce gène dans ASD-400 sujets atteints établi au Canada. Une mutation de novo et deux suppressions de gènes ont été découverts, ce qui indique une contribution de 0,75% dans cette cohorte. Un autre Shank3 suppression a été marquée dans 2 freres affectés par ASD d'une autre collection, ce qui porte le nombre total de public ations dans des mutations sans ASD-les familles touchées à sept. Les données cumulées fournies un appui que haploin sufficence de Shank3 peut causer une forme monogénique de l'autisme à une fréquence suffisante pour justifier l'examen clinique des tests de diagnostic.
papa de Lena (Ted)
et expert en orthographe (mdr)...
et expert en orthographe (mdr)...